T=20+50-16t^2

Simple and best practice solution for T=20+50-16t^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for T=20+50-16t^2 equation:



=20+50-16T^2
We move all terms to the left:
-(20+50-16T^2)=0
We get rid of parentheses
16T^2-20-50=0
We add all the numbers together, and all the variables
16T^2-70=0
a = 16; b = 0; c = -70;
Δ = b2-4ac
Δ = 02-4·16·(-70)
Δ = 4480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4480}=\sqrt{64*70}=\sqrt{64}*\sqrt{70}=8\sqrt{70}$
$T_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{70}}{2*16}=\frac{0-8\sqrt{70}}{32} =-\frac{8\sqrt{70}}{32} =-\frac{\sqrt{70}}{4} $
$T_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{70}}{2*16}=\frac{0+8\sqrt{70}}{32} =\frac{8\sqrt{70}}{32} =\frac{\sqrt{70}}{4} $

See similar equations:

| 5*1/3)x=5. | | 2x^-4-50=112 | | -10=3h-10 | | 51/3)x=5. | | 3y+3(y+7)=-3 | | 1,5/x=(3x^2-6)/(2x(x+1)-3/(2x+2) | | 50-10-5x=5x | | 0.06x+0.04(1200–x)=150 | | 5(w-6)-7w=-24 | | 14y+13=97 | | 2.09e+17= | | X^6x+9=36 | | 3(x−4)=15 | | 3c+6c=10-1c | | 17x-33+12-16=4x+56+10x | | x/3=-4/36 | | 5g–7g=4+2g | | 1/2+x/4=-2/3 | | 16=n÷2 | | x-34*92+134=98-909 | | x2+9=5. | | v=1/3(3.14)(1.5)^2(3) | | 10x+2-12x-10=x+400 | | (8y-9y)4+15=-5 | | 10+60=−h+10,000 | | 66=(2x+1)x | | x-4+x-8=4x+8 | | -1/2x+1=11/4 | | 9+4x=1/2(18=8x) | | 10^2x+1=14 | | 20a-30a=40 | | 10^2x+1=1 |

Equations solver categories